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Two of the most important observations from whole-genome

sequences have been the high rate of gene birth and death and

the prevalence of large-scale duplication events, including

polyploidy. There is also a growing appreciation that polyploidy

is more than the sum of the gene duplications it creates, in part

because polyploidy duplicates the members of entire

regulatory networks. Thus, it may be important to distinguish

paralogs that are produced by individual gene duplications

from the homoeologous sequences produced by

(allo)polyploidy. This is not a simple task, for several reasons,

including the chromosomally cryptic nature of many

duplications and the variable rates of gene evolution. Recent

progress has beenmade in understanding patterns of gene and

genome duplication in the legume family, specifically in

soybean.
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Introduction: Glycine in the context of
legume phylogeny and cytology
Legumes are one of the three largest families of flowering

plants, with nearly 20 000 species representing tremen-

dous morphological, ecological, and genetic diversity

[1,2]. The monophyletic subfamily Papilionoideae com-

prises more than two-thirds of these species and includes

nearly all of the economically important crop legumes.

Most crop legumes belong to the two major sister lineages

that diverged from a common ancestor around 50 million

years ago (mya) [3]: the Hologalegina, including Lotus,
Medicago, and Pisum, and the phaseoloid–millettioid

clade, containing Glycine, Phaseolus, and Vigna.

Most papilionoids are considered to be cytological

diploids, with x = 7 or 8 in Hologalegina and x = 10 or
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11 in the phaseoloids [4]. Glycine is an exception to these

low chromosome numbers, and as such is a rarity among

legumes [4]. The genus is divided into two subgenera,

one of which includes only soybean (Glycine max) and its

wild progenitor (Glycine soja), both of which are annual

Asian species with 2n = 40. Members of the subgenus

Glycine are perennials, with around 25 ‘diploid’ (2n = 38 or

40) species confined to Australia and around nine allote-

traploid (2n = 78–80) taxa [5]. Thus, all extant species of

Glycine are the products of an ancient genome duplication

event, with multiple neopolyploid speciation events hav-

ing been superimposed on this paleopolyploid genome

within the past 50 000 years. A review on legume phy-

logenetics is presented by Cronk et al. elsewhere in this

issue.

Genetic maps and cytogenetics
Genome duplications complicate comparative genome

analyses because rearrangements of the genome are a

common process that can occur soon after a genome

duplication event [6,7]. Consequently, inversions and

translocations mask many evolutionary connections

among regions, and duplicate segments of chromosomes

can remain hidden until a whole-genome sequence

becomes available. Despite these impediments, nearly

a decade ago, an RFLPmap was produced in soybean that

detected many duplicated segments across soybean’s 20

linkage groups, as might have been expected from chro-

mosome numbers. Unexpectedly, this map also identified

several nested duplications [8], suggesting that the

2n = 20 progenitor(s) of soybean had already undergone

an earlier large-scale duplication event. This hypothesis

has been supported in recent fluorescent in situ hybridi-

zation (FISH) studies of soybean. For example, two

bacterial artificial chromosome (BAC) clones that were

genetically anchored to the ends of linkage group E not

only identified linkage group E but also hybridized to

duplicated regions on two different chromosomes [9].

Although not discussed at the time, the presence of this

event raised the question of how many other 2n = 10 or 11

phaseoloids, or indeed other papilionoids, might be fun-

damentally but cryptically polyploid. The soybean link-

age map is mute on the subject of the age of either

duplication event.

Linkage maps are available for other legumes, and could

potentially provide evidence of a shared duplication.

Synteny appears to be less well-conserved among the

genomes of legumes than among those of grasses. Gene

loss and rearrangement makes the detection of synteny

difficult even when it does exist [10], and RFLP maps
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often do not provide adequate resolution for this purpose.

Still, macrosynteny among legumes has been reported

numerous times [11,12��,13–15]. Microsynteny also has

been observed between soybean and Medicago
[16,17,18�]. Microsynteny between homoeologous

regions within the soybean genome has been estimated

to range between 46% and approximately 90% [17,19,20].

These studies were based primarily on BAC fingerprints

and limited cross-hybridization. Increased genomic

sequence from Glycine, Medicago and Lotus will ultimately

provide a complete picture of their shared and divergent

genome structures. Meanwhile, many new insights have

been provided by consideration of gene pairs, primarily

from the large collections of expressed sequence tags

(ESTs) available for these three taxa.

ESTs, Ks, and hypotheses of polyploidy
In contrast to linkage maps, paralogous genes provide an

estimate of the age of the duplication that formed them

because they accumulate synonymous substitutions in a

roughly clock-like fashion. Hence, the age of the dupli-

cation can be estimated from the Ks (substitutions per

synonymous site) value. Duplication and deletion (i.e.

the birth and death) of genes are ongoing genomic

processes. Most duplicate gene copies are lost within

a relatively short timescale, producing a characteristic

decay curve when the number of gene pairs is plotted

against Ks [21]. The signature of a large-scale duplica-

tion is the presence of large number of paralogous

gene pairs that show similar levels of divergence from

one another. This will form a peak against the back-

ground of the birth/death curve for simple duplications.

Early studies of soybean gene families identified

numerous examples of putatively homoeologous

sequence pairs [22–25], but EST collections provide

the large amount of genes that are needed to identify

such peaks. Recently, two studies of ESTs using slightly

different methods identified such Ks peaks in diverse

plant species, including soybean and Medicago truncatula
[26��,27��].

As expected, soybean possesses two peaks (Figure 1).

The median Ks values of these peaks were estimated to

have occurred 14 and 44 Mya using the rate calibration

favored by Schlueter et al. [26��]. Blanc and Wolfe [27��]
used a different calibration that suggested that the two

duplications were more recent. The Schlueter et al. [26��]
dates are used here because they agree more closely with

the divergence dates for legumes [3]. Medicago also pos-

sesses two Ks peaks, a dispersed younger peak that

suggests an accumulation of regional duplications and a

more ancient peak at about 58 Mya. The time of diver-

gence of Medicago and Glycine has been estimated at

around 50 Mya on the basis of the calibration of chlor-

oplast gene phylogenies with legume fossil evidence [3].

If the Medicago value (58 Mya) is correct, then the event

took place in the ancestor of both Glycine and Medicago,
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making the Glycine Ks value too young. Alternatively, if

independent polyploidy events occurred in Glycine and

Medicago, then the Medicago event must be younger than

50 Mya. Either way, the three events are so close that,

given the large variance of Ks values in duplicated genes

[28], further testing was warranted. Phylogenetic trees

were estimated for 39 Glycine genes for which three or

four copies exist. Tree topologies for the majority of

genes were consistent with a single large-scale duplica-

tion event in the ancestor ofGlycine andMedicago (Table 1;

[29��]). This conclusion was supported by Mudge et al.
[18�]. The rate of synonymous substitution in Medicago
thus appears to be�25–30% greater than that in soybean,

accounting for the different age estimates for a shared

Ks peak.

A major implication of this finding is that the Hologale-

gina plus the phaseoloid-millettiod group, which together

comprise around 7000 species (a third of all legumes), are

derived from an ancestor that experienced a large-scale

gene duplication event. Moreover, given the very rapid

radiation of legumes between 50–60 Mya [3], it is possible

that the duplication took place in the ancestor of all

papilionoids, or perhaps of all legumes.

Gene duplication, gene space, and legume
evolution
Polyploidy has had a profound effect on the structure of

the soybean genome. Hybridization-based studies in soy-

bean suggest that the low-copy portion of the genome is

present in approximately 2.6 copies [8]. Zhu et al. [30]
estimated that about a quarter of duplicated genes have

been lost since the last genome duplication event in

soybean. An analysis of ESTs from the cultivar Williams

82 indicated that, on average, each gene family comprised

3.1 copies; this is fewer than would be expected if all of

the copies from two rounds of whole-genome duplication

were retained and expressed (R Shoemaker et al., unpub-
lished). Thus, about 25% of soybean gene duplicates have

been silenced or lost.

The distribution of the remaining genes has become

important as the community organizes for whole-genome

sequencing projects, and the RFLP-based markers on the

soybean genetic map are useful in estimating this. The

soybean RFLP probes were generated with the restric-

tion enzyme PstI, a methylation-sensitive enzyme that

cuts only in regions that are likely to be enriched for genes

[31]. Using the distribution of BACs identified using

RFLP probes and a pool of more than 110 000 BACs, a

Poisson distribution of BAC ‘hits’ suggests that the gene

space of soybeanmight be limited to as little as 24% of the

genome [32��]. Although now thought to be an under-

estimate, the euchromatic region of Medicago was esti-

mated to be only 20% of the genome [33], and this is

expected to correspond with the gene space [34].

Although Glycine has a genome size almost twice that
Current Opinion in Plant Biology 2006, 9:104–109
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Figure 1

Histograms of the percentage of duplicate gene pairs (primary y-axis) versus synonymous distance between pairs (x-axis) for Glycine max (black)

and Medicago truncatula (grey). Overlying the histograms are Ln-normal distributions of the histograms. The density under each curve is shown

on the secondary y-axis.
of Medicago, the gene density in Glycine and Medicago is

similar (1 gene per 5.8–7.2 kb; [19]). Taken together, this

suggests that the total gene number of soybean is likely to

be twice that of Medicago.
Table 1

Phylogenetic resolution of shared duplication in Glycine and

Medicago.

Number of phylogenies Percent of families

Hypothesis 1a 1 3%

Hypothesis 2b 22 56%

Neitherc 4 10%

Equivocald 5 13%

Unresolvede 7 18%

a Glycine–Medicago divergence before independent duplications.
b Shared Glycine–Medicago duplication before divergence.
c No support for either hypothesis.
d Null hypothesis, all duplications were independent.
e Conflicting resolution of phylogenies.
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Thedistribution of duplicated genes in the gene space is of

considerable interest. Expression shifts are expected

among retained duplicates [21,35], and examples have

been noted among soybean paralog pairs [36]. Non-coding

sequences are thought to play a major role in the sub-

functionalization of paralogous copies [37], whereas the

coding regions of duplicated genes tend to evolve more

slowly than those of singletons [38]. The evolutionary

importance of duplication has long been appreciated

[39] but, as noted above, polyploidy provides a new twist.

When genes are duplicated in large numbers, there seems

to be a bias in which genes are retained or lost. For

example, genes that encode proteins that are involved

in transcription or signal transduction are preferentially

retained, whereas one copy of genes that are involved in

DNA repair or defense is more likely to be silenced [40].

The identification of the genes that make legumes

unique is of considerable interest. Genes that are
www.sciencedirect.com
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found only in legumes have been identified [41], but it is

likely that many special morphological or ecological

characteristics of legumes (e.g. symbiotic root nodula-

tion) are shaped by gene families that have homologues

in other flowering plants [42–46]. Gene duplication

might therefore have played a significant role in the

speciation of legumes. Duplications in the MADS-box

[47] and Cycloidea-like [48–50] gene families have been

suggested as factors in the evolution of the bilaterally

symmetrical flowers that give papilionoid legumes their

name. Another study supports the speciation origin of

clusters of rapidly evolving apyrase genes in Medicago,
Glycine and Lotus, and suggests that gene duplication

occurred just before, or early in, the evolution of legumes

[51].

Beyond determining more precisely the importance of

duplications in key functional genes, it will be important

to ascertain whether key duplications are correlated as

part of large-scale or genome-wide events. One of the

most intriguing questions in plant genome evolution is

the degree to which polyploidy is responsible for major

innovations that led to significant evolutionary radiations

[52]. Timing the extent of the duplication event shared

by Medicago and Glycine is an important step towards

answering this question in legumes.

Conclusions and perspectives
The discovery of evidence for many gene duplications in

the genomes of legumes is not surprising. Gene duplica-

tions are an accepted source of evolutionary novelty upon

which natural or human selection can work. Duplicated

genes are not only fundamentally interesting but are also

of serious practical concern, complicating physical and

genetic mapping, genome sequencing studies, reverse

genetic approaches to understanding gene function,

and plant adaptation [53].

Of particular fundamental interest to biologists are large-

scale or whole-genome events. These seem to preserve

duplicates to a greater degree than do single gene dupli-

cations, and also appear to retain certain classes of genes

[40]. It has become apparent that polyploidy can generate

substantial structural and epigenetic changes [30]. Key to

understanding the overall structure of the genome is a set

of markers that will identify duplicate regions [30]. Given

the prevalence of large-scale genome duplications

[27��,28], those markers should be compatible across

species. Most crop legumes, we now know, are funda-

mentally polyploid, with more recent but still ancient

polyploidy superimposed in Glycine and even more recent

autopolyploidy in alfalfa. Revealing the contribution of

gene and genome duplications to the evolution and

domestication of these plants is a significant research

program in itself, and has direct applications to future

improvements in these crop species.
www.sciencedirect.com
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